Significance of ovomucoid- and ovalbumin-specific IgE/IgG$_4$ ratios in egg allergy

Jean Christoph Caubet, MD, Ramon Benchartitiwong, PhD, Erin Moshier, PhD, James H. Godbold, PhD, Hugh A. Sampson, MD, and Anna Nowak-Wegrzyn, MD

Background: The role of specific IgG$_4$ antibodies in natural tolerance acquisition remains a matter of debate; the specific IgE/IgG$_4$ ratio might add value to the measurement of absolute amounts of IgE for assessing the ongoing status of egg reactivity. Objective: We sought to determine the significance of IgG$_4$ antibodies to ovalbumin (OVA) and ovomucoid (OVM) in egg-allergic children. Methods: One hundred seven egg-allergic children (mean age 6.9 years; range 1.6-18.6 years) were challenged to baked egg. The outcomes of the challenges were related to the level of specific IgE and IgG$_4$ to OVM and OVA, component IgE/IgG$_4$ ratios, and mediator release in a functional assay based on the rat basophil leukemia cell line. Results: Baked egg–reactive children had significantly higher OVA and OVM ratios of IgE/IgG$_4$ and mediator release in the rat basophil leukemia–based assay than did tolerant children ($P < .05$ for both). The OVA- and OVM-specific IgE/IgG$_4$ ratios and mediator release were correlated. In the receiver operating characteristic analysis, the areas under the curve for a logistic regression model including specific IgE and IgG$_4$ to OVA and OVM were significantly greater compared with the areas under the curve for egg white–specific IgE and OVM-specific IgE.

Conclusions: The balance between IgE and IgG$_4$ to OVA and OVM has functional consequences. A model that includes the interactions between IgE and IgG$_4$ to OVA and OVM accurately predicts reactivity to baked egg and warrants further investigation. (J Allergy Clin Immunol 2012;nnn:n–nnn)

Key words: Egg, egg white, ovalbumin, ovomucoid, egg allergy, food allergy, children, hypersensitivity, IgE, IgG$_4$, IgE/IgG$_4$ ratio

Hen’s egg white allergy affects approximately 1.6% of children. In a large (n = 2848), population-based study from Australia, the prevalence of challenge-proven, uncooked-egg allergy in 12-month-old infants was 8.9% (95% CI, 7.8-10.0). Egg allergy prevalence is considerably higher, up to 30%, in children with atopic dermatitis or other food allergies. Although egg allergy usually resolves with age, it can persist beyond the age of 5 years. The majority (>70%) of children reacting to regular egg (lightly heated such as French toast or scrambled egg) can tolerate ingestion of baked egg. Consumption of baked egg (muffin and waffle) by children allergic to regular egg (French toast, scrambled egg) was associated with immunologic changes that suggested accelerated development of tolerance to regular egg.

Although our knowledge of the pathophysiology of food allergy has improved, mechanisms of tolerance development remain poorly understood. In type I food hypersensitivity, food-specific IgE antibodies are implicated in the pathophysiology. Emerging data suggest a role for the IgG$_4$ immunoglobulin class in tolerance development. Naturally developing tolerance to cow’s milk was associated with increased regulatory T cells and increased casein-IgG$_4$ levels. In oral immunotherapy trials, increasing food-specific IgG$_4$ levels in sensitized individuals accompanied acquisition of clinical tolerance. Protective or blocking functions for IgG$_4$ subclass antibodies have been proposed; in peanut, egg, and milk allergy, IgG$_4$ antibodies generally overlap with IgE antibodies in respect to sequential epitope specificity.

We sought to determine the functional significance of IgG$_4$ antibodies to ovalbumin (OVA) and ovomucoid (OVM) in children with IgE-mediated egg allergy. We hypothesized that high IgE/IgG$_4$ ratios to OVA and OVM are associated with a higher likelihood of reactivity to baked egg in egg-allergic children. We evaluated the performance of a logistic regression model that includes both specific IgE and IgG$_4$ to OVA and OVM for predictions of reactivity to baked egg.

METHODS

Study population

We analyzed data from a study on tolerance to baked egg. Tolerance to baked egg was determined by oral food challenge (OFC). The study was...
approved by the Mount Sinai Institutional Review Board, and informed consent was obtained before enrollment.

Antibody measurements

A serum sample was collected from each subject to measure egg white (EW)-, OVM-, and OVA-specific IgE and OVM- and OVA-specific IgG ratios with the UniCAP system (Phadia US, Portage, Mich). For specific IgE, the lower limit of detection was 0.35 kU/L and the upper limit of detection was 100 kU/L. For food-specific IgG, the lower limit of detection was 0.02 mg/L and the upper limit of detection was 35 mg/L. For analysis, values below the lower limit of detection for specific IgE and IgG were replaced by half the lower limit of detection,\(^1\) that is, 0.01 mg/L for IgG\(_4\) and 0.175 kU/L for IgE.

Mediator release assay

Sera were obtained from baked egg–reactive children (n = 10), baked egg–tolerant/regular egg–reactive children (n = 9), and children with a history of egg allergy who tolerated baked egg and regular egg during an OFC (n = 8). Rat basophil leukemia (RBL) cells transfected with human Fce receptor I (confirmed expression of alpha chain; kind gift from Dr Stefan Vieths and Dr Lothar Vogel) are an accepted in vitro model for studying IgE-mediated reactions.\(^2\) RBL cells were passively sensitized with human serum overnight and stimulated with a range of 10-fold serial dilutions of unheated and heated (>98.5°C [203°F] for 30 minutes) EW powder, purified OVA grade V, and OVM grade VII (Sigma, St Louis, Mo), starting concentration of 32 µg/mL.

The assay was performed as previously published.\(^3\) N-Hexosaminidase was measured in the supernatant as a marker of RBL-cell mediator release. Results were expressed as a percentage of the cell release minus the spontaneous release that was divided by the total release.

Statistical analysis

Analyses were performed by using SAS/STAT version 9.2 (SAS Institute, Inc, Cary, NC). Comparison of data between baked egg–reactive and baked egg–tolerant patients was performed with the Mann-Whitney U test.

A probability level of less than 5% was considered as significant. The Spearman rank order correlation coefficient (r\(_s\)) was used to measure the strength of the relationship between specific IgE and specific IgG. A Wilcoxon rank-sum test was used to compare peak mediator release in baked egg–reactive and baked egg–tolerant subjects. The linear relationship between peak mediator release and specific IgE/IgG ratios to OVA and OVM was assessed with a mixed model, which accounted for the correlation between repeated measures made on each subject.

A logistic regression model was used to estimate the probability of baked egg allergy among different combinations of specific IgE and IgG to OVA and OVM by using the following formula: \(1/(1 + \exp(-2.33 + 0.26\text{specific IgE to OVA}) + 0.19\text{specific IgE to OVM} - 0.18\text{specific IgG to OVA} + 0.99\text{specific IgG to OVM} - 0.12\text{specific IgE to OVA \times specific IgG to OVA} - 0.34\text{specific IgE to OVM \times specific IgG to OVM}))\). Receiver operating characteristic curves were generated for specific IgE to EW, OVM, and OVA as well as for the logistic regression model. The areas under the curves were estimated and compared by using PROC LOGISTIC in SAS. Youden’s index, the value that maximizes the true-positive rate while minimizing the false-positive rate,\(^4\) was used to estimate the optimal cutpoint (dichotomizing the predicted probabilities of response) for each curve. Using the dichotomized version of these predicted probabilities of baked egg allergy, screening diagnostic statistics including sensitivity, specificity, positive predictive value, and negative predictive value were computed along with 95% CIs.

RESULTS

Baseline clinical characteristics

One hundred seventeen children, mean age of 6.9 years (range, 1.6–18.6 years), were enrolled; 10 were excluded from the analysis because of missing specific IgE and IgG\(_4\) data (Table I). Twenty-five subjects (group A) reacted to baked egg when challenged. They were considered allergic to both baked and regular egg. Of the 82 subjects who tolerated baked egg, 35 reacted to regular egg during the OFC. Twenty-one subjects were not challenged to regular egg, because of EW-specific IgE or skin prick test values greater than the highly predictive levels of reactivity or because of a recent (within previous 6 months) convincing clinical reaction to regular egg. Four subjects refused the regular egg challenge. These 60 patients were grouped together (group B). The remaining 22 subjects were tolerant to both baked and regular egg (group C).

Baseline immunologic parameters in relation to the outcome of the baked egg OFC

The levels of specific IgE to EW, OVM, and OVA measured at baseline during strict avoidance of dietary egg were significantly higher in baked egg–reactive subjects (group A) than in baked egg–tolerant subjects (groups B and C) (P < .05) (Table I). There was a strong correlation between IgE antibody levels to OVA and to EW (r\(_s\) = 0.95; P < .001), between specific IgE to OVM and to EW (r\(_s\) = 0.8; P < .001), and between specific IgE to OVA and to OVM (r\(_s\) = 0.77; P < .001). Most subjects had detectable IgE to both OVM and OVA; 5 subjects (20%) reacting to baked egg had high levels of IgE to OVA and undetectable IgE to OVM.

As previously reported,\(^8\) OVA- and OVM-specific IgG\(_4\) levels did not differ significantly between subjects reactive and tolerant to baked egg (P = .78 and P = .77, respectively). The correlation between specific IgE and specific IgG\(_4\) was modest, although significant for OVA (r\(_s\) = 0.33; P < .001) and OVM (r\(_s\) = 0.53; P < .001).

A subgroup of subjects was found to have undetectable IgG\(_4\) to OVM and/or to OVA. Nine of the 23 subjects (39.1%) with undetectable IgG\(_4\) to both OVM and OVA never knowingly ate egg before the OFC, whereas only 8 subjects out of the 84 (9.5%) with detectable specific IgG\(_4\) to OVA and/or to OVM had never knowingly eaten egg before (P = .002). The majority of patients (55 of 62; 88.7%) who reported a reaction to egg in the past had positive specific IgG\(_4\) to OVM and/or OVA.

OVA- and OVM-specific IgE/IgG\(_4\) ratios in different groups of subjects

OVA- and OVM-specific IgE/IgG\(_4\) ratios were significantly higher in baked egg–reactive subjects (group A) than in baked egg–tolerant subjects (groups B and C) (P = .001 and P = .003, respectively) (Fig 1). Of note, differences in OVA- and OVM-specific ratio between groups remain significant after adjusting for specific IgE to OVA and OVM by analysis of covariance using ranks (P < .03). The correlation coefficient between the IgE/IgG\(_4\) ratio to OVA and to OVM was high (r\(_s\) = 0.73; P < .001), as well as

Abbreviations used

EW: Egg white
OFC: Oral food challenge
OVA: Ovalbumin
OVM: Ovomucoid
RBL: Rat basophil leukemia
the correlation between specific IgG4 to OVM and to OVA ($r_s = 0.76; P < .001$). Baked egg–reactive patients with levels of specific IgE of more than 7 kU/L to EW had a significantly higher IgE/IgG4 ratio compared with tolerant patients with similar levels of specific IgE to EW ($P = .03$). The majority of children with more severe reactions during the OFC who were treated with epinephrine had a high IgE/IgG4 ratio to OVM and/or to OVA (Table II). Most of these patients (9 of 14; 64.3%) also had a high value (>0.18, optimal cutoff decision point) from the statistical model. Children treated with epinephrine during the regular egg challenge had a significantly higher value (>0.18, optimal cutoff decision point) from the statistical model compared with patients not treated with epinephrine ($P < .02$). Among subjects with nonzero mediator release, the natural log transformed IgE/IgG4 ratio to OVA was positively associated with log normal mediator release (Fig 3, A), even after adjusting for specific IgE to OVA ($P = .04$). Among subjects with higher natural log transformed IgE/IgG4 ratio to OVA were more likely to have nonzero mediator release across a wide range of allergen concentrations ($32-32^{10}$ µg/mL ($P = .02$), even after adjusting for specific IgE to OVA ($P = .04$). Specifically, per 10% increase in the IgE/IgG4 ratio to OVA, the mediator release increased by 2%. There was a similar relationship observed with the IgE/IgG4 ratio to OVM; however, it did not reach statistical significance (Fig 3, B).

Performance of different tests in prediction of tolerance to baked egg

The outcome of the OFC was considered as the reference parameter. The performance of the different tests was evaluated by receiver operating characteristic analysis. Baked egg–reactive subjects (group A) were compared with baked egg–tolerant subjects (groups B and C). In addition to specific IgE to EW, OVA, and OVM and specific IgG4 to OVA and OVM, we evaluated a logistic regression model that incorporated specific IgE and IgG4 to OVA and OVM. In our study population, the area under the curve for this model was significantly greater compared with the area under the curve for EW-specific IgE and OVM-specific IgE ($P < .01$) (Fig 4). The model was also superior to OVA-specific IgE, but the difference did not reach statistical significance ($P = .09$). We also found that the combination of specific IgE and IgG4 to OVA or OVM in a logistic regression model significantly increased the area under the curve compared with specific IgE alone to OVA or OVM, respectively ($P < .05$). The different decision points and the resulting clinical sensitivity and specificity for specific IgE to OVM and to EW as well as for the model including all the parameters are summarized in Table III.

DISCUSSION

We report data in support of the hypothesis that specific IgG4 antibodies play an important role in natural tolerance acquisition in egg-allergic children. Baked egg–reactive children have significantly higher OVA- and OVM-specific IgE/IgG4 ratios than do tolerant children ($P < .05$). By using logistic regression models, we showed that combination of specific IgE and IgG4 performed better than specific IgE alone in predicting reactivity to baked egg.

The role of IgG4 in tolerance acquisition has been debated for many years. Previous studies showed that IgG4 levels increase during allergen-specific immunotherapy, indicating that IgG4 antibodies play a role in the induction of tolerance. Although IgG4 antibodies have been proposed to act as blocking antibodies. However, the role of IgG4 antibodies in natural tolerance development in food allergy is poorly understood. So far, IgG4 in cow’s milk allergy has been studied, but the results are inconclusive. Although it has been shown that attaining natural tolerance could be associated with higher IgG4 levels or an increase in sequential epitope binding by IgG4, others reported higher IgG4 levels in subjects allergic to cow’s milk than in subjects without food allergy. Regarding egg allergy, subjects

TABLE I. Study participants’ characteristics

<table>
<thead>
<tr>
<th>Outcome of the oral challenge</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baked egg reactive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n (%)</td>
<td>25 (23.4)</td>
<td>60 (56.1)</td>
<td>22 (20.5)</td>
</tr>
<tr>
<td>Age (y)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>7.2</td>
<td>6.5</td>
<td>7.9</td>
</tr>
<tr>
<td>Range</td>
<td>1.8-13.1</td>
<td>1.6-15.8</td>
<td>3.4-18.6</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>21 (84)</td>
<td>38 (63.3)</td>
<td>13 (59.1)</td>
</tr>
<tr>
<td>Female</td>
<td>4 (16)</td>
<td>22 (36.7)</td>
<td>9 (40.9)</td>
</tr>
<tr>
<td>Severity of the reaction during OFC, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1</td>
<td>8 (32)</td>
<td>12 (34.3)</td>
<td>0</td>
</tr>
<tr>
<td>Grade 2</td>
<td>6 (24)</td>
<td>11 (31.4)</td>
<td>0</td>
</tr>
<tr>
<td>Grade 3</td>
<td>5 (20)</td>
<td>4 (11.4)</td>
<td>0</td>
</tr>
<tr>
<td>Grade 4</td>
<td>6 (24)</td>
<td>8 (22.9)</td>
<td>0</td>
</tr>
<tr>
<td>Grade 5</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0</td>
</tr>
<tr>
<td>Specific IgE (kU/mL), mean (range)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EW</td>
<td>11.1 (0.7-58.9)</td>
<td>6.1 (0.2-83.6)</td>
<td>1.9 (0.2-9.4)</td>
</tr>
<tr>
<td>OVA</td>
<td>11.9 (0.8-61.8)</td>
<td>6.2 (0.2-86.1)</td>
<td>1.6 (0.2-9.7)</td>
</tr>
<tr>
<td>Specific IgG4 (mg/mL), mean (range)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVA</td>
<td>0.4 (0.0-2.9)</td>
<td>1.5 (0.0-11.8)</td>
<td>2.4 (0.0-31)</td>
</tr>
<tr>
<td>OVM</td>
<td>0.2 (0.0-1.5)</td>
<td>0.4 (0.0-5.4)</td>
<td>0.8 (0.0-14.1)</td>
</tr>
</tbody>
</table>

To be noted, all patients included in this study were on strict avoidance of dietary egg before the challenge to determine tolerance to baked and/or uncooked egg.

A: Baked egg tolerant (including 35 patients tolerating baked egg but reacting to regular egg and 25 patients tolerating baked but not challenge to regular egg).

B: Regular egg tolerant; children with diagnosis of egg allergy who were asymptomatic before the challenge to determine tolerance to baked egg and regular egg challenge.

C: Baked egg–reactive children did not con-
with persistent sensitization and allergy have increased OVA-specific IgG levels compared with those with transient sensitization to EW.35,36 Confirming previous reports,37 we found that the levels of OVA- and OVM-specific IgG did not correlate with the reactivity to baked egg (\(P = .78\) and \(P = .77\), respectively). As the absolute numbers of specific IgG levels do not seem to be predictive of tolerance, measurement of specific IgG level alone is not helpful in the diagnostic evaluation of suspected egg allergy and this test alone should not be used in clinical practice.4,38

IgG production is a physiological response to ingested dietary antigens, which can be detected in a large proportion of tolerant subjects.39-43 In our study, previous exposure to egg was reported in all subjects with positive IgG4 to OVA and/or OVM. We found that 9 subjects (39.1\%) with undetectable specific IgG4 to both OVA and OVM had never been knowingly exposed to egg. These subjects had detectable specific IgE to OVA and/or OVM. Our results are in agreement with findings in beekeepers,44 suggesting that it takes many months of repeated antigen exposure before IgG4 responses become prominent. Production of sufficient IL-10 is likely a rate-limiting step.44

The balance between allergen-specific IgE and IgG4 may influence whether clinical allergy persists or tolerance develops.18,19,45,46 The production of IgE and IgG4 antibodies is regulated by similar mechanisms; for example, IL-4 from \(T_H2\) cells induces both IgE and IgG4 switching in B cells, whereas IL-10 inhibits IgE secretion but upregulates IgG4 secretion.34,47 The IgE/IgG4 ratio has been proposed as a measure of the specific-IL-10–driven humoral response. In studies of allergen immunotherapy, immunological tolerance occurred through a modified \(T_H2\) response characterized by high IgG4/IgE ratio.48-50 A recent study reported that food-sensitized infants
with high IgG/IgE ratio to OVA were more likely to tolerate egg at 4 years than were infants with low ratios. In the literature, both IgE/IgG and IgG/IgE ratios are reported. For practical reasons, we chose to report the ratios as IgE/IgG. Our data showed that baked egg–reactive children had significantly higher IgE/IgG ratios to OVA and OVM than did baked egg–tolerant children (P < .05) (Fig 1). This increased IgE/IgG ratio in baked egg–allergic children could be considered a marker of Th2 immune skewing as it correlates with allergy persistence. Importantly, the differences in IgE/IgG ratios to OVA and OVM between groups persist after adjusting for specific IgE to OVA and OVM (analysis of covariance), confirming that our results were not being driven by only specific IgE itself. Moreover, the combination of IgE and IgG could provide additional information to that provided by specific IgE alone. Particularly, the majority of children presenting with a severe reaction during the OFC had a high IgE/IgG ratio to OVA and/or OVM, even those with a low level of specific IgE to EW (Table II).

We found a good correlation between the allergic status of the patients and mediator release (Fig 2) in an in vitro assay based on the RBL cell line. Heating of EW powder for 30 minutes at 98.5°C decreased mediator release when cells were sensitized with serum from baked egg–tolerant children. However, heating of OVA and OVM had no effect on mediator release, probably because 98.5°C is not a sufficiently high temperature to bring about the conformational changes seen with the high temperatures used in baking. The value of the OVA- and OVM-specific IgE/IgG ratio and mediator release was correlated (Fig 3). IgG could block mast cell activation via inhibitory, FcγRIIB-dependent signals and via direct competition with IgE for allergenic epitopes. Although cross-linking of IgG through the Fc receptor on RBL-2H3 cells has been shown not to induce any detectable mediator release, RBL-2H3 cells express the Fcγ receptor. Furthermore, murine Fcγ receptors recognize human IgG. Therefore, the blocking effect of specific IgG in our experiment could be explained by these 2 mechanisms. Alternatively, similar to the findings in children outgrowing milk allergy, the affinity of IgE antibodies in baked egg–tolerant children might be lower than in baked egg–reactive children, despite comparable IgE levels.

Ando et al recently reported that OVM-specific IgE levels greater than 11 kU/L were predictive of baked egg reactivity. We found similar results with a positive decision point (corresponding to a specificity of 95%) for an OVM-specific IgE level of 12.8 kU/L. However, in our study, specific IgE to EW and to OVA performed better than specific IgE to OVM (Fig 4). OVM is considered to be the most relevant allergen in EW, presumably because of its ability to maintain allergenicity despite extensive heating and acid treatment. Our data support this hypothesis, showing significantly higher OVM-specific IgE levels in baked egg-reactive subjects than in baked egg–tolerant subjects. However, we found that 5 subjects reacting to baked egg had negative OVM-specific IgE but positive OVA-specific IgE. Moreover, among baked egg–tolerant but regular egg–reactive subjects, some had IgG only to OVA (negative OVM-specific IgG), despite having positive specific IgE to both OVA and OVM. Assuming that specific IgG antibodies are markers of food tolerance, these subjects might have developed only IgG to the relevant allergen, OVA. Our results support the concept that a subgroup of egg allergic children has specific reactivity to OVA without reactivity to OVM.

We developed a logistic regression model that incorporated both specific IgE and IgG to OVA and OVM. Compared with
specific IgE to EW or OVM, this model had the highest positive and negative predictive values (Table III) and was significantly better at differentiating between subjects reactive or tolerant to baked egg (Fig 4). By using the optimal cutoff decision point derived from the model, we found that a low value (<0.18) from the statistical model was highly predictive of tolerance to baked egg, particularly in patients with levels of specific IgE to EW above 7 kU/L (Fig 5). These data support a role for specific IgG₄ in tolerance acquisition as analysis of the interaction between specific IgE and IgG₄ to OVA and/or OVM, rather than individual analysis, significantly improved the accuracy of diagnosing reactivity to baked egg.

There are several limitations inherent to our study design. First, exposure to egg is difficult to evaluate accurately, as children may have been exposed without the knowledge of their parents. Moreover, because the level of specific IgG may depend on the

FIG 3. Correlation of the mediator release after stimulation with OVA (A) and OVM (B) and the IgE/IgG₄ ratio to OVA and OVM, respectively.
exposure level to egg, it is difficult to interpret these results. Recent studies showed that food-specific IgG levels were not solely related to dietary exposure, but could reflect the polyclonal response to allergen. Food-allergic subjects produced significantly more food-specific antibodies than did controls despite the fact that they remained on an allergen-free diet. However, none of these studies included systematic dietary reports with an objective evaluation of food consumption.

TABLE III. Characteristics of diagnostic tests for determination of clinical reactivity to baked egg

<table>
<thead>
<tr>
<th>Diagnostic test</th>
<th>sIgE to EW (%)</th>
<th>sIgE to OVM (%)</th>
<th>sIgE to OVA (%)</th>
<th>Statistical model*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area under the curve (%)</td>
<td>75.9</td>
<td>66.7</td>
<td>79.9</td>
<td>87.4</td>
</tr>
<tr>
<td>Optimal cutoff point†</td>
<td>2.6</td>
<td>3.3</td>
<td>2.67</td>
<td>0.18</td>
</tr>
<tr>
<td>Sensitivity, specificity (%)</td>
<td>76, 70</td>
<td>52, 83</td>
<td>80, 73</td>
<td>80, 85</td>
</tr>
<tr>
<td>PPV, NPV (%)</td>
<td>43, 91</td>
<td>48, 85</td>
<td>48, 92</td>
<td>63, 93</td>
</tr>
<tr>
<td>Positive decision point‡</td>
<td>26.2</td>
<td>12.8</td>
<td>25.3</td>
<td>0.52</td>
</tr>
<tr>
<td>Sensitivity, specificity (%)</td>
<td>12, 95</td>
<td>28, 95</td>
<td>8, 95</td>
<td>48, 95</td>
</tr>
<tr>
<td>PPV, NPV (%)</td>
<td>43, 78</td>
<td>64, 81</td>
<td>33, 77</td>
<td>75, 86</td>
</tr>
<tr>
<td>Negative decision point§</td>
<td>0.78</td>
<td>ND</td>
<td>1.29</td>
<td>0.12</td>
</tr>
<tr>
<td>Sensitivity, specificity (%)</td>
<td>96, 35</td>
<td>96, 49</td>
<td>96, 60</td>
<td></td>
</tr>
<tr>
<td>PPV, NPV (%)</td>
<td>31, 97</td>
<td>36, 98</td>
<td>42, 98</td>
<td></td>
</tr>
</tbody>
</table>

ND, Nondetermined (because the highest sensitivity is 80%); NPV, negative predictive value; PPV, positive predictive value; sIgE, specific IgE.

*Statistical model including both specific IgE and IgG4 to OVM and OVA.† Optimal cutoff point defined as the shortest distance to the receiver operating characteristic.

‡Positive decision point defined as the cutoff level producing a specificity of 95%.

§Negative decision point defined as the cutoff level producing a sensitivity of 95%.

Conclusions

Baked egg is a common ingredient in processed foods that is difficult to avoid in children’s diets. Therefore, characterization of different phenotypes of egg allergy in relation to baked egg reactivity/tolerance is of practical significance. Our data suggest that the balance between IgE and IgG4 to OVA and OVM has important functional implications. Children reactive to baked egg have high IgE/IgG4 ratios to OVA and OVM, whereas children tolerant to baked egg have low IgE/IgG4 ratios to OVA and OVM. High IgE/IgG4 ratios to OVA and OVM are also associated with anaphylactic reactions requiring treatment with epinephrine during the OFC to both baked and regular egg. A logistic regression model that includes the interactions between specific IgE and IgG4 to OVA and OVM has superior accuracy for predicting baked egg reactivity. These data support a protective role of specific IgG4 in natural tolerance acquisition in food allergic subjects. From a diagnostic point of view, neither the IgE/IgG4 ratio nor the statistical model is ready to be used in clinical practice and should be explored in future studies to evaluate their potential diagnostic value.

We thank Ms Janet Butler from the Ossining High School for assistance with mediator release assay.

Clinical implications: A low IgE/IgG4 ratio to ovalbumin and ovomucoid is a marker of tolerance to baked egg in children. A statistical model that includes the interactions between specific IgE and IgG4 to ovalbumin and ovomucoid predicts baked egg reactivity and warrants further investigation.
REFERENCES