Deep inhalation bronchoprotection

When methacholine is inhaled with total lung capacity inhalations, which is the recommended inhalation pattern for the 5-breath dosimeter method, as many as a quarter of asthmatic patients can have a false-negative test result. It has been suggested to us that high forced expiratory volume in 1 second (FEV₁) could explain negative (dosimeter) methacholine test results in patients with asthma. We therefore decided to perform additional analyses on previously published data in 55 asthmatic patients comparing the 2 American Thoracic Society (ATS) methacholine methods.

Bronchoprotection can be defined as the tendency of a drug or a maneuver to inhibit bronchoconstriction. In these 55 patients, the bronchoprotective effect of the 5 deep inhalations was expressed as the doubling concentration difference between the 2 methods. This was calculated by the following formula: (log dosimeter PC_{20} - log tidal breathing PC_{20})/0.3 (where 0.3 is log 2 and PC_{20} is provocation concentration that caused a decrease in FEV₁ of 20%).

We looked for linear regression correlation with baseline FEV₁ (the FEV₁ before the first of the 2 challenges) defined as FEV₁ percent predicted, FEV₁ absolute (liters), and FEV₁/forced vital capacity (FVC) ratio. We also sought correlation with (log) baseline tidal breathing PC_{20} and (log) dosimeter PC_{20}.

For all regressions regarding lung function, there was a nonsignificant correlation for higher FEV₁ being associated with greater bronchoprotection (protection vs FEV₁, [percent predicted], P = .16; protection vs FEV₁ [liters], P = .24; and protection vs FEV₁/FVC ratio, P = .11). We demonstrated a significant positive correlation between baseline tidal breathing PC_{20} and bronchoprotection (Fig 1, r = 0.3, P = .03). This finding demonstrates that the higher the baseline tidal breathing PC_{20}, the greater the bronchoprotective effect of the deep inhalations. Fourteen of the 55 patients (25%) had negative dosimeter challenge results as previously published. In addition, the (expected) positive correlation was seen between the dosimeter PC_{20} and bronchoprotection (r = 0.81, P < .001).

These results indicate that baseline FEV₁ is at most a minor determinant of the important bronchoprotective effect of the 5 deep inhalations required to perform the dosimeter methacholine challenge as per guidelines. It is possible, in fact likely, that a larger study might have shown statistical significance, but this would be of limited clinical significance. The positive correlation with tidal breathing methacholine response, as previously shown by dichotomizing this population, indicates that the deep inhalation bronchoprotection is more likely to occur in those with, as defined by the ATS, mild (PC_{20} of 1–4 mg/mL) to borderline (PC_{20} of 4–16 mg/mL) airway hyperresponsiveness. The marked correlation with the dosimeter PC_{20} is to be expected because the magnitude of the bronchoprotection is primarily determined by the magnitude of the dosimeter PC_{20}. Other features, such as rhinitis and obesity, have been shown to play a role in the effect of deep inhalations in the airways of individuals without asthma. A larger study in asthmatic patients would be required to investigate these and other potential factors in asthmatic patients.

We believe the importance of this bronchoprotective effect is often overlooked. Our data demonstrate that a quarter of asthmatic patients with a positive tidal breathing methacholine test result have negative dosimeter test results. This number approaches 50% of patients when addressing those with mild to borderline airway hyperresponsiveness (ie, PC_{20} of 1–16 mg/mL). This is the range most positive diagnostic methacholine challenge results would be expected to occur. The major value of methacholine challenge is the high diagnostic sensitivity and high negative predictive value, providing that symptoms are clinically current (ie, within the past day or two). We would also like to add the addi-
tional caveat that the methacholine should be inhaled by submaxi-
mal inhalations to preserve the diagnostic sensitivity. The dosime-
ter method can be adequately and easily performed using
submaximal inhalations.

In summary, the important bronchoprotective effect of inhaling
methacholine by total lung capacity inhalations does not depend
on baseline FEV\textsubscript{1} but rather depends on baseline (tidal breathing)
PC\textsubscript{20}. We recommend that diagnostic methacholine challenges,
performed by either method,1 be performed without deep total
lung capacity inhalations.

Donald W. Cockcroft, MD, FRCP(C)
Beth E. Davis, PhD
Division of Respirology, Critical Care and Sleep Medicine
Department of Medicine
University of Saskatchewan
Royal University Hospital
Saskatoon, Saskatchewan, Canada
don.cockcroft@usask.ca

References

[1] Crapo RO, Casaburi R, Coates AL, et al. Guidelines for methacholine and
329.
[2] Cockcroft DW, Davis BE. The bronchoprotective effect of inhaling methacholine
by using total lung capacity inspirations has a marked influence on the inter-
[3] O’Connor BH, Aikman SL, Barnes PJ. Tolerance to the nonbronchodilator effects
[4] Cockcroft DW, Murdock KY, Berscheid BA, Gore BP. Sensitivity and specificity of
histamine PC\textsubscript{20} in a random selection of young college students. J Allergy Clin
[6] Todd DC, Davis BE, Hurst TS, Cockcroft DW. Dosimeter methacholine challenge:
deep inhalations in subjects with rhinitis without asthma. J Allergy Clin Immunol.
[8] Skloot G, Schechter C, Desai A, Togias A. Impaired response to deep inspiration in