Vitamin D, Infection, and Allergy

Carlos Camargo, MD, DrPH

Massachusetts General Hospital
Harvard Medical School
Boston, USA

November 4, 2011

Disclosure

Nothing to disclose

Objectives

At the conclusion of this session, the participant should be able to:

- To identify main sources, clinical measurement, and general health effects of vitamin D
- To describe key studies on the association between vitamin D, infection, and allergy
- To discuss implications of recent vitamin D findings for allergy/immunology patients

Overview of Presentation

1. Vitamin D
2. Respiratory infections / wheezing
3. Asthma
 - Incident asthma
 - Exacerbations
4. Winter-related atopic dermatitis
5. Food allergy

Vitamin D Synthesis & Metabolism

Sun → 7-dehydro cholesterol → Skin

Liver → 25-hydroxylase (CYP27A1) → Vitamin D

Kidney → 1α-hydroxylase (CYP27B1) → 25(OH)D

Kidney → 24-hydroxylase → 1,25(OH)2D

Severe Vitamin D Deficiency → Rickets
Vitamin D Receptor (VDR)

- VDR present in most tissues and cells of body
- Growing recognition that many different cells have the enzymatic machinery to convert 25(OH)D to the active hormone, 1,25(OH)₂D
- >2,700 binding sites for VDR along genome
- Significant effects on activity of 229 genes

A. Norman, 2006; Ramagopalan, Genom Res 2010

Non-Calcemic Functions of Vitamin D

- Cancer
- CVD
- Autoimmune

Holick, J Clin Invest 2006

Risk Factors for Vitamin D Insufficiency

- Winter at higher latitudes
- Darker skin
- Lifestyle-related ↓ UVB exposure
 - Newborns with exclusive breastfeeding
 - Age 50+ (more indoors + ↓ skin conversion)
 - Sunscreen use
- Obesity (fat storage +)

Bischoff-Ferrari, Osteopor Int 2010; Canadian Paediatric Society 2007; Wagner, Pediatrics 2008; Institute of Medicine 2011

Serum 25(OH)D (cut-points vary by author)

- Conversion factor: 1 ng/ml = 2.496 nmol/L
- Looking across multiple conditions, optimal level probably is ~40 ng/ml = ~100 nmol/L
 Note: Some recommend 40-60 ng/ml
- Insufficiency: 10 – 29 ng/ml
- Deficiency: <10 ng/ml

2008 AAP: Defic <20 ng/ml
2011 IOM: Goal ≥20 ng/ml

Figure 1. Global climatology (1979-1992) of mean daily erythemal (i.e., “sunburning”) UV dose (from the NCAR website http://www.oes.ucar.edu/TUV/).

Figure 1. Global climatology (1979-1992) of mean daily erythemal (i.e., “sunburning”) UV dose (from the NCAR website http://www.oes.ucar.edu/TUV/).
Institute of Medicine (IOM)

<table>
<thead>
<tr>
<th></th>
<th>1997 AI</th>
<th>Tol. UIL</th>
<th>RDA</th>
<th>ULI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth to 12 months</td>
<td>200</td>
<td>1000</td>
<td>~400</td>
<td><8m: 1000</td>
</tr>
<tr>
<td>Ages 1 to 70 years</td>
<td>1-50: 200</td>
<td>51-70: 400</td>
<td>600</td>
<td>1-3: 2500</td>
</tr>
<tr>
<td>Age 71+ years</td>
<td>600</td>
<td></td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>Pregnant / lactating</td>
<td>200</td>
<td></td>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>

* Assumes minimal sunlight and target 25(OH)D ≥20 ng/ml

IOM 1997; IOM 2011

Low 25(OH)D Levels in US Children

- 0-5 months: <30 ng/ml
- 6-11 months: <20 ng/ml
- 12 months: <10 ng/ml

Mansbach, Pediatrics 2009

Dietary Vitamin D → Serum 25(OH)D

- Dietary intake has modest effect on 25(OH)D:
 - Glass of fortified milk (100 IU) = ↑ 1 ng/ml
 - 5 µg (200 IU) per day = ↑ 2 ng/ml
 - 10 µg (400 IU) per day = ↑ 4 ng/ml
 - 25 µg (1000 IU) per day = ↑ 10 ng/ml

- Typical MVI (200-600 IU)

- Cod liver oil: variable (400 - 1300 IU per tbsp)

- Skin can create many thousands of IUs after only 15-20 minutes of direct UVB exposure

Multiple sources

Niels Finsen and Heliotherapy

Finsen, Br Med J 1903

1903 Nobel Prize – UVR and Lupus Vulgaris

Heliotherapy for TB

Vitamin D and Epidemic Influenza

“The nature of the seasonal stimulus remains undiscovered” (1981)

Hope-Simpson, J Hygiene 1981; Cannell, Epidemiol Infect 2006

Cathelicidin Antimicrobial Peptide (CAMP)

Human CAMP gene is direct target of VDR and strongly up-regulated in myeloid cells by 1,25(OH)₂D₃

Gombart, FASEB 2005

Maternal Vitamin D and Risk of Child Wheezing

Camargo, Am J Clin Nutr 2007

Immunologic Effects of Vitamin D

Project Viva

- Based in Boston (northeastern USA)
- Prospective cohort study of ~2,000 pregnant women and their offspring (pre-birth cohort)
- Objective: To study pre- and peri-natal influences on outcomes of infancy, childhood, adulthood
- Data collection includes:
 - In-person visits (during pregnancy & childhood), with multiple interviews & questionnaires
 - Blood samples (frozen for future testing)

Published Cohort Studies (as of Dec 2010)

<table>
<thead>
<tr>
<th>Study</th>
<th>Maternal intakes</th>
<th>Age</th>
<th>Risk of Child Wheezing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camargo, 2007 USA</td>
<td>Maternal intake ... 3y</td>
<td>↓</td>
<td>ns</td>
</tr>
<tr>
<td>Devereux, 2007 Scotland</td>
<td>Maternal intake ... 5y</td>
<td>↓</td>
<td>ns</td>
</tr>
<tr>
<td>Erkkola, 2009 Finland</td>
<td>Maternal intake ... 5y</td>
<td>(↓)</td>
<td>ns</td>
</tr>
<tr>
<td>Miyake, 2010 Japan</td>
<td>Maternal intake ... 2y</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Hypponen, 2004 Finland</td>
<td>Infant supplement ... 31y</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Gale, 2008 England</td>
<td>Maternal 25(OH)D ... 9m, 9y</td>
<td>(↑)</td>
<td>(↑)</td>
</tr>
<tr>
<td>Bäck, 2009 Sweden</td>
<td>Infant supplement ... 6y</td>
<td>composite</td>
<td>↑</td>
</tr>
</tbody>
</table>
NZ Asthma & Allergy Cohort Study

• Based in New Zealand (PI: Julian Crane)
• Prospective cohort study of ~1,000 pregnant women and their offspring (birth cohort)
• **Objective**: To study peri-natal influences on asthma, allergies, and eczema
 - Cord blood 25(OH)D = median 18 ng/ml
 - Respiratory infection by age 3 months
 - Wheezing by age 5 years
 - Doctor-diagnosed asthma at age 5 years

Camargo, *Br J Nutr* 2010

Respiratory Infection By Age 3 Months

• Season-adjusted odds ratio (OR) was higher among those with low 25(OH)D:
 - 30+ ng/ml: 1.00
 - 10-29: 1.39 (95% CI, 0.98-1.99)
 - <10: 2.16 (95% CI, 1.35-3.46)

• This inverse association was not materially changed by adjustment for 14 other factors

Camargo, *Pediatrics* 2011

Cord Blood 25(OH)D, Wheeze, and Asthma

Camargo, *Pediatrics* 2011

Curvilinear Association with IgE?

- **UK** (Hypnøen, *Allergy* 2009):
 - Cross-sectional study, n=9377 adults, age 45y
 - Low & high 25(OH)D associated with higher levels of total IgE

- **Arizona** (Rothers, *JACI* 2011):
 - Birth cohort study, n=219 newborns → age 5 years
 - Low & high 25(OH)D associated with higher risk of aeroallergen sensitization

Randomized Trials on Respiratory Infection

• Post hoc analyses of bone RCTs suggest benefit
• First published RCTs (2009-2010):
 - New York (Li-Ng, *Epidemiol Inf* 2009):
 n=162 adults, 2000 IU/day x 3 mo: NS
 n=430 children, 1200 IU/day x 4 mo: P<0.05
 - Finland (Laakso, *J Inf Dis* 2010):
 n=164 adults, 400 IU/day x 6 mo: P~0.05
 - Afghanistan (Manaseki-Holland, *Trop Med Int Health* 2010):
 n=224 children with pneumonia, 100k IU bolus: P<0.05
• Several ongoing RCTs of likely relevance, including studies of pregnancy/infancy and in all age groups

Ginde, *Arch Intern Med* 2009

Vitamin D and Recent URI

ACAAI Annual Meeting
Nov. 3 - 8 2011, Boston
Asthma Exacerbations

- Prospective cohort data suggest benefit
 - Childhood wheezing studies
 - USA (Brehm, J Allergy Clin Immunol 2010)
 n=1024 children, baseline 25(OH)D, 4 years: P<0.01
 - First published RCTs (2010-2011)
 - Japan (Urashima, Am J Clin Nutr 2010): n=430 children, 1200 IU/day x 4 mo: P<0.05
 - Poland (Majak, J Allergy Clin Immunol 2011) n=48 children, 500 IU/day x 6 mo: P<0.01
 - Several ongoing RCTs, including studies of COPD

Asthma Severity & CS Response

- 54 adults + 100 children with asthma:
 - cross-sectional analyses + in vitro testing
- Mean 25(OH)D = 28 ± 31 ng/ml
- Higher serum 25(OH)D levels were associated with:
 - Better lung function (both)
 - Reduced airway hyper-responsiveness (adults)
 - Less corticosteroid use & fewer positive SPTs (children)
 - Improved in vitro response to corticosteroids (both)
- Vitamin D supplementation may improve multiple parameters of asthma severity & treatment response.

Sutherland, AJRCCM 2010; Searing, JACI 2010

Skin – Norwegian RCT of Heliotherapy

- Health Ministry – “Health Travels” program
- Children with severe atopic dermatitis (AD) were randomly assigned to:
 - Visit Gran Canary Island for 4 weeks
 - Stay at home in Norway
- Improvement in all AD outcomes, including:
 - ↓ AD severity score
 - ↓ skin colonization by S. aureus
- No mention of vitamin D

Byremo, Allergy 2006

Randomized Trials on Winter-related AD

- Boston (Sidbury, Br J Dermatol 2008)
 - Pilot RCT of vitamin D supplement (1000 IU x 1 mo) vs. placebo; n=11 children
 - Vitamin D appeared to improve AD severity
- Mongolia (presented at 2009 WCPD, Bangkok)
 - clinicaltrials.gov NCT00879424
 - RCT of vitamin D supplement (1000 IU x 1 mo) vs. placebo; n=107 children
 - Vitamin D improved AD severity (p<0.05)
- Mediated by ↓ bacterial colonization of skin (?)
Potential mechanisms for the hypothesized link between sunshine, vitamin D, and food allergy in children

Vassallo & Camargo, JACI 2010

Population-based RCTs (as of Sept 2011)

• VIDA (Scragg & Camargo)
 – 5,100 men + women, age 50-84
 – Vit D3 100,000 IU/month (equals ~3,300 IU/day)
 – Primary outcomes: CVD, infection, fractures ...
 – Enrollment started 2011 → results in 2017

• VITAL (Manson)
 – 20,000 subjects (men age 50+, women age 55+)
 – 2x2 factorial: 2000 IU/d Vit D3 + 1 g/d EPA+DPA
 – Primary outcomes: cancer, CVD ...
 – Enrollment started 2011 → results in 2017

Summary & Clinical Implications

• Low 25(OH)D levels are associated with:
 – ↑ respiratory infections = ↑ wheezing & asthma exacerbations
 – Possible ↑ corticosteroid responsiveness
 – No association with incident childhood asthma
 – Winter-related atopic dermatitis
 – Possible ↑ risk of incident food allergy

• Emerging data from RCTs support benefit for infection

• Safety of high doses in pregnancy & infancy uncertain (possible ↑ allergy risk ... then traditional concerns re: ↑ calcium)

• Further research is needed, especially RCTs

• My best guess? Aim for serum 25(OH)D ~40 ng/ml

Mullins, Ann Allergy Asthma Immunol 2009